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1 Introduction

Most large firms use both share and debt capital to provide long-term finance
for their operations. The debt capital may be raised from a bank loan, or may
be obtained by selling bonds directly to investors. As an example of the scale of
US bond markets, the value of new bonds issued in 2004 totaled $5.48 trillion,
and the total value of outstanding marketable bond debt at 31 December 2004
was $23.6 trillion [1]. In comparison, the total global market capitalisation of
all companies quoted on the New York Stock Exchange (NYSE) at 31/12/04
was $19.8 trillion [2]. Hence, although company stocks attract most attention
in the business press, bond markets are actually substantially larger.

When a company issues traded debt (e.g. bonds), it must obtain a credit
rating for the issue from at least one recognised rating agency (Standard and
Poor’s (S&P), Moody’s and Fitches’). The credit rating represents an agency’s
opinion, at a specific date, of the creditworthiness of a borrower in general (a
bond-issuer credit-rating), or in respect of a specific debt issue (a bond credit
rating). These ratings impact on the borrowing cost, and the marketability of
issued bonds. Although several studies have examined the potential of both
statistical and machine-learning methodologies for credit rating prediction
[3, 4, 5, 6], many of these studies used relatively small sample sizes, making
it difficult to generalise strongly from their findings. This study by contrast,
uses a large dataset of 791 firms, and introduces πGE to this domain.

In common with the related corporate failure prediction problem [7], a fea-
ture of the bond-rating problem is that there is no clear theoretical framework
for guiding the choice of explanatory variables, or model form. Rating agencies
assert that their credit rating process involves consideration of both financial
and non-financial information about the firm and its industry, but the precise
factors, and the related weighting of these factors, are not publicly disclosed.
In the absence of an underlying theory, most published work on credit rating
prediction employs a data-inductive modelling approach, using firm-specific
financial data as explanatory variables, in an attempt to ‘recover’ the model
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used by the rating agencies. This produces a high-dimensional combinatorial
problem, as the modeller is attempting to uncover a ‘good’ set of model inputs,
and model form, giving rise to particular potential for evolutionary automatic
programming methodologies such as GE.

1.1 Structure of Chapter

The next section provides a concise overview the bond rating process, followed
by a sections which introduce Grammatical Evolution and its variant πGE.
Next, a description of the data set and methodology adopted is provided.
The remaining sections provide the results of the experiments followed by a
number of conclusions.

2 Background

Several categories of individuals would be interested in a model that could pro-
duce accurate estimates of bond ratings. Such a model would be of interest to
firms that are considering issuing debt as it would enable them to estimate the
likely return investors would require if the debt was issued, thereby providing
information for pricing the bonds. The model could also be used to assess the
creditworthiness of firms that have not issued debt and hence do not already
have a published bond rating. This information would be useful to bankers
or other companies that are considering whether they should extend credit to
that firm.

2.1 Notation for Credit Ratings

Although the precise notation used to denote the creditworthiness of a bond
or issuer varies between rating agencies, the credit status is generally denoted
by means of a discrete, mutually exclusive, letter rating. Taking the rating
structure of S&P as an example, the ratings are broken down into 10 broad
classes. The highest rating is denoted AAA, and the ratings then decrease in
the following order, AA, A, BBB, BB, B, CCC, CC, C, D. Ratings between
AAA and BBB (inclusive) are deemed to represent investment grade, with
lower quality ratings deemed to represent debt issues with significant specu-
lative characteristics (also called junk bonds). A ‘C’ grade represents a case
where a bankruptcy petition has been filed, and a ‘D’ rating represents a case
where the borrower is currently in default on their financial obligations. As
would be expected, the probability of default depends strongly on the initial
rating which a bond receives (Table 1). Ratings from AAA to CCC can be
modified by the addition of a + or a - to indicate at which end of the rating
category the bond rating falls.
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Table 1. Rate of default by initial rating category (1987-2002) (from Standard &
Poor’s, 2002)

Initial Default Rate
Rating (%)

AAA 0.52
AA 1.31
A 2.32

BBB 6.64
BB 19.52
B 35.76

CCC 54.38

2.2 Rating Process

Rating agencies earn fees from bond issuers for evaluating the credit status
of new issuers and bonds, and for maintaining credit rating coverage of these
firms and bonds. A company obtains a credit rating for a debt issue by con-
tacting a rating agency and requesting that an issue rating be assigned to the
new debt to be issued, or that an issuer rating be assigned to the company
as a whole. As part of the process of obtaining a rating, the firm submits
documentation to the rating agency including recent financial statements, a
prospectus for the debt issue, and other non-financial information. Discus-
sions take place between the rating agency and management of the firm and a
rating report is then prepared by the analysts examining the firm. This rating
report is considered by a rating committee in the rating agency which decides
the credit rating to be assigned to the debt issue/issuer.

Rating agencies emphasise that the credit rating process involves consider-
ation of financial as well as non-financial information about the firm, and also
considers industry and market-level factors. The precise factors and related
weighting of these factors used in determining a bond’s rating are not pub-
licly disclosed by the rating agencies. Subsequent to their initial rating, a bond
may be re-rated upwards (upgrade) or downwards (downgrade) if company or
environmental circumstances change. A re-rating of a bond below investment
grade to junk bond status (such bonds are colourfully termed fallen angels)
may trigger a significant sell-off as many institutional investors are only al-
lowed, by external or self-imposed regulation, to hold bonds of investment
grade.

3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve
computer programs in any language [8, 9, 10, 11], and can be considered a
form of grammar-based genetic programming. Rather than representing the
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programs as parse trees, as in GP [12], a linear genome representation is
used. A genotype-phenotype mapping is employed such that each individ-
ual’s variable length binary string, contains in its codons (groups of 8 bits)
the information to select production rules from a Backus Naur Form (BNF)
grammar. The grammar allows the generation of programs in an arbitrary
language that are guaranteed to be syntactically correct, and as such it is
used as a generative grammar, as opposed to the classical use of grammars in
compilers to check syntactic correctness of sentences. The user can tailor the
grammar to produce solutions that are purely syntactically constrained, or
they may incorporate domain knowledge by biasing the grammar to produce
very specific forms of sentences. BNF is a notation that represents a language
in the form of production rules. It is comprised of a set of non-terminals that
can be mapped to elements of the set of terminals (the primitive symbols that
can be used to construct the output program or sentence(s)), according to
the production rules. A simple example BNF grammar is given below, where
<expr> is the start symbol from which all programs are generated. The gram-
mar states that <expr> can be replaced with either <expr><op><expr> or
<var>. An <op> can become either +, -, or *, and a <var> can become either
x, or y.

<expr> ::= <expr><op><expr> (0)

| <var> (1)

<op> ::= + (0)

| - (1)

| * (2)

<var> ::= x (0)

| y (1)

The grammar is used in a developmental process to construct a program by
applying production rules, selected by the genome, beginning from the start
symbol of the grammar. In order to select a production rule in GE, the next
codon value on the genome is read, interpreted, and placed in the following
formula:

Rule = Codon V alue Mod Num. Rules

where Mod represents the modulus operator. Given the example individual’s
genome (where each 8-bit codon has been represented as an integer for ease of
reading) in Fig.1, the first codon integer value is 220, and given that we have 2
rules to select from for <expr> as in the above example, we get 220 Mod 2 =
0. <expr> will therefore be replaced with <expr><op><expr>.
Beginning from the left hand side of the genome codon integer values are
generated and used to select appropriate rules for the left-most non-terminal
in the developing program from the BNF grammar, until one of the following
situations arise:
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Fig. 1. An example GE individual’s genome represented as integers for ease of
reading.

220 20253101203220240 102203 55 202221

241 133 30 204 140 39 202 203 10274

• A complete program is generated. This occurs when all the non-terminals
in the expression being mapped are transformed into elements from the
terminal set of the BNF grammar.

• The end of the genome is reached, in which case the wrapping operator
is invoked. This results in the return of the genome reading frame to the
left hand side of the genome once again. The reading of codons will then
continue unless an upper threshold representing the maximum number of
wrapping events has occurred during this individual’s mapping process.

• In the event that a threshold on the number of wrapping events has oc-
curred and the individual is still incompletely mapped, the mapping pro-
cess is halted, and the individual assigned the lowest possible fitness value.

Returning to the example individual, the left-most <expr> in <expr><op><expr>

is mapped by reading the next codon integer value 240 and used in 240 Mod 2 =
0 to become another <expr><op><expr>. The developing program now looks
like <expr><op><expr><op><expr>. Continuing to read subsequent codons
and always mapping the left-most non-terminal the individual finally gener-
ates the expression y*x-x-x+x, leaving a number of unused codons at the end
of the individual, which are deemed to be introns and simply ignored. A full
description of GE can be found in [8].

4 πGrammatical Evolution

The GE mapping process can be divided into a number of sub-components in-
cluding the transcription and translation processes as outlined in the previous
section. The πGE variant of GE replaces the translation process to allow evo-
lution to specify the order in which production rules are mapped as opposed
to the strict depth-first, left to right, mapping of the standard GE algorithm.
In πGE we use the genotype to dictate which non-terminal from those present
to expand next, before deciding which production rule to apply to the selected
non-terminal. The genome of an individual in πGE is different in that there
are two components to each codon. That is, each codon corresponds to the
pair of values (nont, rule).

In the first derivation step of the example mapping presented earlier,
<expr> is replaced with <expr><op><expr>. Then in the standard GE genotype-
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phenotype mapping process, the left-most non-terminal (the first <expr>) in
the developing program is always expanded first. The πGE mapping process
differs in an individual’s ability to determine and adapt the order in which
non-terminals will be expanded [13]. To this end, a πGE codon corresponds to
the pair (nont, rule), where nont and rule are represented by N bits each (N=8
in this study), and a chromosome, then, consists of a vector of these pairs.
In πGE, we analyse the state of the developing program before each deriva-
tion step, counting the number of non-terminals present. If there is more than
one non-terminal present in the developing program the next codon’s nont

value is read to pick which non-terminal will be mapped next according to
the following mapping function:

Non − terminal = Codon nont V alue Mod Numberofnon − terminals

In the above example, there are 3 non-terminals (<expr>0<op>1<expr>2) after
application of the first production rule. To decide which non-terminal will be
expanded next we use Number of non-terminals = 9 % 3 = 0, i.e., <expr>0

is expanded. The mapping rule for selecting the appropriate rule to apply to
the current non-terminal is given in the normal GE fashion:

Rule = Codon rule V alue Mod NumberofRules

In this approach, evolution can result in a derivation subsequence being
moved to a different context as when counting the number of non-terminals
present we do not pay attention to the type of non-terminals (e.g. <expr>
versus <op>).

An example of the application of πGE is provided in Fig. 2. In the top
derivation tree, 9 Mod 3=0 (this derivation step is labelled b), hence the left-
most non-terminal is expanded first. In the bottom derivation tree a mutation
event transforms the second codon’s nont value from 9 to 8, giving 8 Mod 3=2
(step b), hence the right-most non-terminal is expanded instead. The three
subsequent subtrees (derivation steps labelled c & d, e, and f & g) that are
produced are redistributed amongst other non-terminals.

In this instance, the single mutation is acting in a similar fashion to a mul-
tiple sub-tree exchange or crossover within the individual. The top derivation
tree corresponds to the expression ( x * x ) - y, whereas the bottom tree gives
x * (x - y).

We note that πGE could be implemented in more than one way. An al-
ternative approach would be to respect non-terminal types and only allow
choices to be made between non-terminals of the same type, thus preserving
the semantics of the following derivation subsequence, and simply changing
the position in which it appears in the developing program.
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Fig. 2. An example of piGE, illustrating a single mutation event in the nont

position in the second codon.
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5 Experimental Approach

The dataset consists of financial data of 791 industrial and service US com-
panies, along with their associated bond-issuer credit-rating, drawn from the
S&P Compustat database. Of these companies, 57% have an investment-grade
rating (AAA, AA, A, or BBB), and 43% have a junk rating. To allow time for
the preparation of year-end financial statements, the filing of these statements
with the Securities and Exchange Commission (S.E.C), and the development
of a bond rating opinion by Standard and Poor rating agency, the bond rat-
ing of the company as at 30 April 2000, is matched with financial information
drawn from their financial statements as at 31 December 1999. A subset of
600 firms was randomly sampled from the total of 791 firms, to produce two
groups of 300 investment grade and 300 junk rated firms. The 600 firms were
randomly allocated to the training set (420) or the hold-out sample (180),
ensuring that each set was equally balanced between investment and non-
investment grade ratings.

Five groupings of explanatory variables, drawn from financial statements,
are given prominence in prior literature as being the prime determinants of
bond issue quality and default risk:

i. Liquidity
ii. Debt
iii. Profitability
iv. Activity / Efficiency
v. Size

Liquidity refers to the availability of cash resources to meet short-term cash
requirements. Debt measures focus on the relative mix of funding provided
by shareholders and lenders. Profitability considers the rate of return gener-
ated by a firm, in relation to its size, as measured by sales revenue and/or
asset base. Activity measures consider the operational efficiency of the firm
in collecting cash, managing stocks and controlling its production or service
process. Firm size provides information on both the sales revenue and asset
scale of the firm and also provides a proxy metric on firm history. The group-
ings of potential explanatory variables can be represented by a wide range
of individual financial ratios, each with slightly differing information content.
The groupings themselves are interconnected, as weak (or strong) financial
performance in one area will impact on another. For example, a firm with a
high level of debt, may have lower profitability due to high interest costs.

Following the examination of a series of financial ratios under each of these
headings, a total of eight financial variables was selected for inclusion in this
study. The selection of these variables was guided both by prior literature in
bankruptcy prediction [14, 15, 16] and literature on bond rating prediction
[17, 18, 19, 20]. These ratios were then further filtered using statistical analysis.
The ratios selected were as follows:

i. Current ratio
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ii. Retained earnings to total assets
iii. Interest coverage
iv. Debt ratio
v. Net margin
vi. Market to book value
vii. Log (Total assets)
viii. Return on total assets

Table 2. Means of input ratios for investment and junk bond groups of companies

Investment Junk
grade grade

Current ratio 1.354 1.93
Retained earnings/Total assets 0.22 -0.12
Interest coverage 7.08 1.21
Debt ratio 0.32 0.53
Net margin 0.07 -0.44
Market to book value 18.52 4.02
Total assets 10083 1876
Return on total assets 0.10 0.04

The objective in selecting a set of proto-explanatory variables is to choose fi-
nancial variables that vary between companies in different bond rating classes, and
where information overlaps between the variables are minimised (the financial ratios
chosen during the selection process are listed at the end of this section). Comparing
the means of the chosen ratios (see Table 2) for the two groups of ratings, reveals
a statistically significant difference at the 1% level, and as expected, the financial
ratios in each case, for the investment ratings are stronger than those for the junk
ratings. The only exception is the current ratio, which is stronger for the junk rated
companies, possibly indicating a preference for these companies to hoard short-term
liquidity, as their access to long-term capital markets is weak. A correlation analysis
between the selected ratios indicates that most of the cross-correlations are less than
| 0.20 |, with the exception of the debt ratio and (Retained Earnings/Total Assets)
ratio pairing, which has a correlation of -0.64. The grammar adopted is as follows:

<lc> ::= if( <expr> <relop> <expr> )

class=’’Junk’’;

else
class=’’Investment Grade’’;

<expr> ::= ( <expr> ) + ( <expr> )

| <coeff> * <var>

<var> ::= var3[index] | var4[index]

| var5[index] | var6[index]

| var7[index] | var8[index]
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| var9[index] |var10[index]

| var11[index]

<coeff> ::= ( <coeff> ) <op> ( <coeff> )

| <float>

<op> ::= + | - | *

<float> ::= 9 | 8 | 7 | 6 | 5 | 4

| 3 | 2 | 1 | -1 | .1

<relop> ::= <=

where var3 = Current Ratio, var4 = Retained Earnings to total assets, var5 =
Interest Coverage, var6 = Debt Ratio, var7 = Net Margin, var8 = Market to book
value, var9 = Total Assets, var10 = ln (Total Assets), var11 = Return on total
assets.

6 Results

The results from our experiments are now provided. Each of the πGE experiments
is run for 100 generations, with variable-length, one-point crossover at a probabil-
ity of 0.9, one point bit mutation at a probability of 0.01, roulette selection, and
steady-state replacement. To assess the stability of the results across different ran-
domisations of the dataset between training and test data, we recut the dataset five
times, maintaining an equal balance of investment and non-investment grade ratings
in the resulting training and test datasets. In our experiments, fitness is defined as
the number of correct classifications obtained by an evolved discriminant rule. The
results for the best individual of each cut of the dataset, where 30 independent runs
were performed for each cut, averaged over all five randomisations of the dataset,
for a population size of 500 is given in Table 3, and Figure 3 displays the evolution
of the mean average and mean best results over time.

Table 3. Average performance for the five recuts of the best evolved rules on their
in and out-sample datasets.

Fitness TP TN FP FN

In-sample 0.8450 182.8 172.1 37.9 27.2

Out-sample 0.8500 77.9 75.1 14.9 12.1

To assess the overall hit-ratio of the developed models (out-of-sample), Press’s Q
statistic [21] was calculated for each model. In all cases, the null hypothesis, that
the out-of sample classification accuracies are not significantly better than those
that could occur by chance alone, was rejected at the 1% level. A t-test of the hit-
ratios also rejected a null hypothesis that the classification accuracies were no better
than chance at the 1% level. Across all the data recuts, the best individual achieved
classification accuracy of 86% in-sample and 87% out-of-sample.
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Fig. 3. Mean average (left) and mean best (right) over 30 runs, across all 5 recuts.
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When applying any model induction approach, it is important to reduce the
possibility of overfitting. A number of practical steps to reduce the chance of over-
fitting include the collection of a sufficiently large dataset relative to the number of
explanatory variables included in the model, and the testing of the developed model
on a sizeable out-of-sample dataset. In this study we have trained the models using
420 data vectors, tested the evolved models using a sizeable out-of-sample dataset
(180 data vectors), and have restricted the evolved models to use a maximum of
eight explanatory variables. As noted above, the in-sample and out-of-sample classi-
fication accuracies are very similar, indicating that overfitting does not seem to have
been a problem. Given that the evolved models were restricted to use a maximum
of eight explanatory variables we have not implemented a regularisation term in the
error function.

Examining the structure of one of the best individuals shows that the evolved
discriminant function had the following form:

IF ( 0 ≤ -2 + Debt Ratio - Total Assets - 5*Retained Earnings

Total Assets
)

THEN ‘Junk’ ELSE ‘Investment Grade’

Examining the signs of the coefficients of the evolved rules does not suggest that
they conflict with common financial intuition. The rules indicate that low/negative
retained earnings, low/negative total assets or high levels of debt finance are symp-
tomatic of a firm that has a junk rating. It is noted that similar risk factors have
been identified in predictive models of corporate failure which utilise financial ratios
as explanatory inputs [7, 22]. Conversely, low levels of debt, a history of successful
profitable trading, and high levels of total assets are symptomatic of firms that have
an investment grade rating.
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6.1 Comparison of Results

To provide a benchmark for the results obtained by πGE we compare them with the
results obtained on the same recuts of the dataset, using a fully-connected, feedfor-
ward multi-layer perceptron (MLP), trained using the backpropagation algorithm.
The developed networks utilised all the explanatory variables. The optimal number
of hidden-layer nodes was found following experimentation on each separate data
recut, and varied between two and four nodes. The classification accuracies for the
networks, averaged over all five recuts is provided in Table 4.

Table 4. Performance of the MLPs on the training and out-of-sample datasets,
averaged over all five recuts of the dataset.

Fitness TP TN FP FN

In sample 0.869 181.8 183.2 26.8 28.2
Out-sample 0.850 75.8 77.2 12.8 14.2

The levels of classification accuracy obtained with the MLP are competitive with
earlier research, with for example [17] obtaining an out-of-sample classification ac-
curacy of approximately 83.3%, although it is noted that the size of the dataset
in their study was small. Comparing the results from the MLP with those of πGE
on the initial fitness function (Table 3) suggests that πGE has proven competitive
with an MLP methodology, in terms of producing a similar classification accuracy.
Benchmark results were also obtained using an LDA methodology. Utilising the
same dataset recuts as πGE, LDA produced results (averaged across all five recuts)
of 82.74% in-sample, and 85.22% out-of-sample. Again, πGE is competitive against
these results in terms of classification accuracy. Comparing the results obtained by
the linear classifiers (LDA and πGE) against those of an MLP, suggests that strong
non-linearities between the explanatory variables and the dependent variable are
not present.

7 Conclusions & Future Work

The objective of this chapter was to introduces a novel classification system based on
a variant of Grammatical Evolution, πGE, and to assess the utility of this method-
ology using information drawn from the financial statements of bond-issuing firms.
Despite using data drawn from companies in a variety of industrial sectors, the
developed models showed an impressive capability to discriminate between invest-
ment and junk rating classifications. The πGE developed models also proved highly
competitive with a series of MLP models developed on the same datasets. Several
extensions of the methodology in this study are indicated for future work. One
route is the inclusion of non-financial company and industry-level information as
input variables. A related possibility would be to concentrate on building rating
models for individual industrial sectors. Another avenue of research would be to ex-
tend the grammar used by πGE in this study to encompass multi-class bond rating
predictions.
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